Degradation of Cobaloximes to Derivatives of Imidazo[1,2-a]pyridine

By Nathaniel W. Alcock, Bernard T. Golding,* David R. Hall, Ulrich Horn, and William P. Watson,

Department of Molecular Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL

Abstract

Acetic anhydride in pyridine degrades several alkylcobaloximes to 2-[(E)-1-acetoxyiminoethyl]-3-acetylimidazo-[1,2-a]pyridine (5). the structure of which is established by direct X-ray crystallographic analysis of 3 -acetyl-$2-[(E)-1$-hydroxyiminoethyl]imidazo[1.2-a]pyridine (6) derived from compound (5) by mild hydrolysis. Treatment of compound (6) with nitric acid gives 3-acetyl-2-(1.1-dinitroethyl)imidazo[1.2-a]pyridine (11). Spectroscopic properties of compounds (5). (6), and (11) confirm the assigned structures. Experiments concerning the mechanism of formation of compound (5) are reported, and the generality of the described degradation is indicated. Compound (6) is orthorhombic, space group Pbca. with $a=16 \cdot 402(10) . b=13 \cdot 463(10), c=9 \cdot 735(10) ~ \AA$. $Z=8$. The structure was solved by direct methods and refined to $R 0.089$ for 520 observed reflections measured by diffractometer.

For our studies ${ }^{1}$ of the solvolytic chemistry of 2acetoxyalkylcobaloximes, \dagger compounds (1) and (2) were initially prepared by acetylation of the 2 -hydroxyalkylcobaloximes (3) and (4), respectively, with an excess of acetic anhydride in pyridine. This gave a high yield ($>90 \%$) of (2) from (4) after 13 h at room temperature. However, after 9 days at room temperature (or 2 days at 60°) (2) had vanished, and a new compound had accumulated $[30 \%$ yield based on (4)]. Preliminary analytical and spectral studies indicated that the new substance was a cobalt-free, heteroaromatic compound. Since it was likely that a major structural change of
\dagger Alkyl(base)cobaloximes are bis(dimethylglyoximato)cobalt complexes with an alkyl group and a Lewis base as axial ligands (for reviews of their chemistry see ref. 2).
mechanistic interest had occurred, we have rigorously identified the new compound as $2-[(E)-1$-acetoxyimino-ethyl]-3-acetylimidazo[1,2-a]pyridine (5). The identification rests on a spectroscopic examination of (5) and its degradation products and on an X-ray crystallographic study of the oxime (6), formed by mild alkaline hydrolysis of (5). ${ }^{3}$ Treatment of the alkyl-(γ-picoline)cobaloxime (7) with acetic anhydride in γ-picoline gives a homologue (8), pointing to the generality of the described degradation for appropriate pyridine derivatives of cobaloximes.
${ }^{1}$ B. T. Golding, H. L. Holland, U. Horn, and S. Sakrikar, Angew. Chem. Internat. Edn., 1970, 8, 959; B. T. Golding and S. Sakrikar, J.C.S. Chem. Comm., 1972, 1183.
${ }^{2}$ See e.g. G. N. Schrauzer, Accounts Chem. Res., 1968. 1, 97 ; D. Dodd and M. D. Johnson, J. Organometallic Chem., 1973, 52, 1.
${ }_{3}$ Preliminary report, N. W. Alcock, B. T. Golding, D. R. Hall, and U. Horn, J. Amer. Chem. Soc., 1972, 94, 8610.

Evidence bearing on the mechanism of formation of (5) is presented and discussed.

RESULTS AND DISCUSSION

Spectroscopic Examination of Compound (5) and its Degradation Products.-The n.m.r. spectrum of (5) (Figure 1) shows a total of 13 protons, consistent with the analytical data $\left(\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$. The three high-field singlets are from methyl groups [COMe ($\delta 2 \cdot 64$), $\mathrm{MeC}=\mathrm{N}$ ($\delta 2.57$), and $\left.\mathrm{MeCO}_{2}(\delta 2 \cdot 27)\right]$. A first-order analysis of the 4 low-field protons is included in Figure 1 and points to the presence of a pyridinimine system (9). This conclusion was verified by comparison with literature data ${ }^{4}$ and with a readily available ${ }^{5}$ model compound (10). Although there is a close correspondence between the coupling constants of the ring protons of (5) and (10), the chemical shifts of these protons are different (see Experimental section). In particular $\mathrm{H}-5$ in (10) resonates at $\delta 8.40$ (an unexceptional position for an α-proton on a pyridine ring), yet H-5 in (5) resonates at much lower field ($\delta 9 \cdot 69$). This effect is also seen in (6), but not in the

[^0]degradation product (11) [from treating (6) with nitric acid], which shows the H-5 signal at $\delta 8.91$. The deshielding effect of a peri-carbonyl group is well documented. ${ }^{6}$ Hence, the unusual chemical shift of $\mathrm{H}-5$ in (5) and (6) could be due to the proximity of a carbonyl function, a conclusion supported by comparison with the model compounds (12) and (13). ${ }^{7}$ These compounds

(9)

(10) $R^{1}=0^{-}, R^{2}=\mathrm{COMe}, R^{3}=\mathrm{PhCH}_{2}$
(12) $R^{1}=\mathrm{CICH}_{2} \mathrm{CO}, R^{2}=\mathrm{O}^{-}, \mathrm{R}^{3}=\mathrm{PhCH}_{2}$
(13) $R^{1}=\mathrm{ClCH}_{2} \mathrm{CO}, R^{2}=0^{-}, R^{3}=\mathrm{Me}$
both show an H-5 signal at δ ca. 9.98. The presence of a carbonyl function in (5) and (6) was indicated by $\mathrm{C}=\mathrm{O}$ stretching absorptions at ca. $1640 \mathrm{~cm}^{-1}$, n.m.r. spectra [see above for (5), below for (6)], a positive iodoform test with (6), and an exchange experiment. Thus, on dissolution in $\mathrm{NaOD}-\mathrm{D}_{2} \mathrm{O}$ the three-proton signal at $\delta 2.55$ in the n.m.r. spectrum of (6) disappeared ($t_{1} 1.3 \mathrm{~min}$ at 37°) while the other signals (except that due to OH) were unchanged. Selective exchange of the acetyl protons in butane-2,3-dione mono-oxime has been reported ${ }^{8}$ and under our conditions proceeds with $t_{\ddagger} 3 \mathrm{~min}$.

The presence of the grouping $\mathrm{MeC}=\mathrm{N}-\mathrm{OAc}$ in (5) was inferred from i.r. data (acetyl $\mathrm{C}=\mathrm{O}$ stretch at $1775 \mathrm{~cm}^{-1}$), n.m.r. data (see above), mass spectral data (loss of OAc from molecular ion), and its ready hydrolysis. The last caused difficulties in the isolation and purification of (5) and it was found easier to examine (6), the product from hydrolysis of (5) with methanolic sodium methoxide. The spectral properties of (6) are similar to those of (5) except that, as expected, it lacks O-acetyl absorptions and possesses hydroxy-absorptions. The presence of the function $\mathrm{MeC}=\mathrm{N}-\mathrm{OH}$ was also suggested by its mass spectrum (prominent loss of OH from molecular ion) and the selective conversion in high yield of this grouping into a geminal dinitro-function [in compound (ll)] by treatment with nitric acid. ${ }^{9}$

From the information described so far structure (5) could be derived. But several other structures were conceivable. U.v. data and extensive mass spectral data for compounds (5); (6), and (11) were of little help and even misleading (the u.v. absorptions were quite unlike those for imidazo $[1,2-a]$ pyridine ${ }^{10}$). As noted above, $\mathrm{H}-5$ in (11) in contrast to $\mathrm{H}-5$ in (5) resonates at $\delta 8.91$, and we felt at the time that this observation was inconsistent with structures such as (5). We were attracted to

7 W. K. Anderson and A. E. Friedman, Canad. J. Chem., 1971, 49, 668.
${ }^{8}$ R. L. Beach, Tetrahedron Letters, 1972, 1913.

- Cf. J. R. Bull, Sir E. R. H. Jones, and G. D. Meakins, J. Chem. Soc., 1965, 2601.
${ }_{20}$ J. G. Lombardino, J. Org. Chem., 1965, 80, 2403.
structures in which the hydroxyimino-grouping could be near H-5, thus causing the observed deshielding. It was argued that the conversion $(6) \longrightarrow$ (11), involving a gross
tures of (5) and (11) follow from consideration of the chemical data (see previous section). Figure 2 gives a view of the structure of (6) along the b axis; Figure 3

structural change in the vicinity of H-5, would be expected to alter its chemical shift appreciably. The solution to this dilemma was only apparent after an X-ray crystallographic study of (6).

Crystal Structure of Compound (6).-An X-ray crystallographic study shows (6) to be 3 -acetyl- $2-[(E)-(1-$ hydroxyiminoethyl)imidazo[1,2-a]pyridine and the struc-
includes bond angles and bond lengths and Figure 4 shows the packing of molecules within one unit cell. The planar heteroaromatic rings are arranged in stacks parallel to the a axis, with molecules of adjacent stacks situated in head-to-tail 'herring-bone' fashion. The main intermolecular interactions are between ring hydrogen atoms, although the oxime proton and $N(1)$ of
the ring of adjacent molecules are sufficiently close for hydrogen bonding to occur.

The bicyclic ring system in (6) is planar with the 3 acetyl group almost in this plane $\left(\phi 12 \cdot 4^{\circ}\right)$, but the $2-[(E)-$ 1-hydroxyiminoethyl] substituent is twisted 60.0° out of this plane. The deshielding of $\mathrm{H}-5$ in the n.m.r. spectra of (5) and (6) (see previous section) must be due to the pericarbonyl group. The rotamer observed in the crystalline state is presumably not the exclusive conformation in CDCl_{3}, but there will be restricted rotation about the $\mathrm{MeCO}^{-} \mathrm{C}$ bond due to conjugation with the 10 -electron heteroaromatic system, and the rotamer shown may be favoured over the alternative planar rotamer on steric grounds.

The reason for reduced deshielding of H-5 in the di-nitro-derivative (11) is not so immediately apparent, and this was a misleading factor in our initial attempts at structural elucidation. However, the greater bulk of the

Figure 2 Compound (6) viewed along the b axis, showing the atom numbering system used in the crystallographic analysis

2-(1,1-dinitroethyl) substituent in (11) could make the planar orientation of the 3 -acetyl group much less favourable than in (5) or (6), and this is corroborated by the higher frequency of the carbonyl stretching frequency in (11) ($1656 \mathrm{~cm}^{-1}$) relative to (5) and (6) $\left(1640 \mathrm{~cm}^{-1}\right)$, indicating less conjugation of the carbonyl group with the aromatic system in (11).

The crystal structure determination of (6) is the first exact structural analysis of an imidazo $[1,2-a]$ pyridine. The structural parameters are consistent with those expected from such a 10π-electron system with bond lengths mostly intermediate between standard values for $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ versus $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$. The shortness of $\mathrm{C}(5)-\mathrm{C}(6)$ and $\mathrm{N}(1)-\mathrm{C}(9)$ compared with $\mathrm{N}-\mathrm{C}(5)$ and $C(8)-C(9)$ may indicate some bond localisation [represented in the extreme by a non-delocalised pyridinimine structure (9)].

Studies on the Mechanism of Formation of Compound (5). -The likely precursors of (5) (pyridine, dimethylglyoxime, and acetic anhydride) can be clearly recognised in its structure in unrearranged form, an oxidation having occurred at one of the methyl groups of dimethylgly-

[^1]oxime. The formation of (5) from cobaloxime (4) is not influenced by oxygen as shown by assaying parallel

(a)

(b)
nd (6) with standard deviations in parentheses
oxygenated and degassed runs. Yields of (5) were consistently about 0.27 mol . equiv., and this product was accompanied by $0.7-1.0 \mathrm{~mol}$. equiv. of dimethylglyoxime di- O-acetate. The cobalt atom of (4) is therefore likely to be the oxidant. However, bromo(pyridine)cobaloxime (14) gives no imidazopyridine (5) under the usual reaction conditions, indicating that oxidation state $\mathrm{Co}^{\mathrm{III}}$ is inactive. Since (5) is formed irrespective of the nature of the alkyl group in several cobaloximes [(3), (4), and (15)],* a possible first step is homolysis of the $\mathrm{Co}-\mathrm{C}$

Figure 4 The contents of one unit cell of compound (6) projected down c
bond ${ }^{2}$ to produce an alkyl radical and (pyridine)cobaloxime(II) (17). Formation of (5) could then take
place as shown in the Scheme. The imidazo[1,2-a]pyridine (18) is an attractive intermediate since such compounds undergo electrophilic substitution at position 3.11 Accordingly, the isomer (19) was synthesised by
improve the yield of (5) from (4), although photolysis is known to induce homolysis of $\mathrm{Co}-\mathrm{C}$ bonds. ${ }^{2}$ Perhaps our conditions (daylight) were insufficient for competition with concomitant thermolysis to be effective.

Scheme
condensing 2-aminopyridine with 1-bromo-3-hydroxy-iminobutan-2-one. ${ }^{12}$ The derivation of the latter compound from 3 -hydroxyiminobutan-2-one, prepared by nitrosation of butanone, probably means that the methyl group and oxime hydroxy-group are anti [cf. syn in (18)], i.e. (19) is 2-[(Z)-1-hydroxyiminoethyl]imidazo[1,2-a]pyridine. However, (19) suffered only O-acetylation [to (20)] on treatment with acetic anhydride in pyridine. Although some other observations are not fully consistent with the Scheme, none excludes it given the complexity of the reactions involved. Thus, (pyridine)cobaloxime(II) (17) also yields (5) (3-4\%) on treatment with acetic anhydride in pyridine. Increased light did not

Treatment of (4) with benzoic anhydride in pyridine did not produce an analogue of (5). This may be due to the lower susceptibility of a benzoyl carbonyl group to nucleophilic attack (as compared with an acetyl carbonyl), causing a critical step to be inhibited.

EXPERIMENTAL

T.l.c. analyses were carried out on silica gel G/UV ${ }_{254}$ (Machery, Nagel and Co.). M.p.s were determined in open capillary tubes. ${ }^{1} \mathrm{H}$ N.m.r. spectra were taken for ca. 10%
${ }^{11}$ W. C. Mosby, in 'The Chemistry of Heterocyclic Compounds,' ed. A. Weissberger, Interscience, New York, 1961, vol. 15, part 1, p. 460.
${ }_{12}$ O. Diels and M. Farkas, Ber., 1910, 43, 1959.
solutions in CDCl_{3} (60 MHz ; Perkin-Elmer R12) or ca. 5% solutions in CDCl_{3} (100 MHz ; Varian HA100) with tetramethylsilane as internal standard. U.v. spectra were taken for solutions in methanol.
Isolation of 2-[(E)-1-Acetoxyiminoethyl $]$-3-acetylimidazo-[1,2-a]pyridine (5) and Factors influencing its Formation.-2-Hydroxypropyl(pyridine)cobaloxime ${ }^{13}$ ($158 \mathrm{mg}, 0.37$ mmol) was dissolved with warming in dry pyridine (1.4 ml) and redistilled acetic anhydride $(0.4 \mathrm{ml})$ was added. The mixture was heated at 60° for 48 h , then evaporated under high vacuum at room temperature or below. The residue was dissolved in chloroform (containing 2% ethanol) (25 ml) and shaken with silica gel N (for t.l.c.) (1 g); the mixture was then filtered to give a pale brown filtrate. The black residue was washed with more chloroform (total ca. 60 ml). The chloroform washings were combined and evaporated to an oily solid (118 mg) which was chromatographed on silica gel $\mathrm{N}(4 \mathrm{~g})$ under suction. Elution with dichloromethane gave dimethylglyoxime di-O-acetate ($81 \mathrm{mg}, 0.41 \mathrm{mmol}$), then elution with 25 and 50% chloroform-dichloromethane gave (5) ($25 \mathrm{mg}, 0.097 \mathrm{mmol}$) as coloured crystals, pure on t.l.c. $\left(R_{\mathrm{F}} 0.4\right.$ in $5 \% \mathrm{MeOH}-\mathrm{CHCl}_{3} ; R_{\mathrm{F}} 0.3$ in EtOAc-PhH, $1: 1$). This material could be sublimed (100° and 0.001 mmHg) to obtain white crystals. Carrying out this procedure on gram scale gave a sublimate of (5) which was recrystallised $\left(\mathrm{CS}_{2}\right) ;$ m.p. $112^{\circ}, \delta 2 \cdot 27(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.57(3 \mathrm{H}$, s, $\mathrm{MeC}=\mathrm{N}$), $2.64(3 \mathrm{H}, \mathrm{s}, \mathrm{CAc}), 7.08\left(1 \mathrm{H}, \mathrm{dd}, J_{5.6}+J_{6.7}\right.$ $13.5 \mathrm{~Hz}, \mathrm{H}-6), 7.49\left(1 \mathrm{H}, \mathrm{dd}, J_{6,7} 6.5, J_{7,8} 8.9 \mathrm{~Hz}, \mathrm{H}-7\right), 8.73$ ($1 \mathrm{H}, \mathrm{d}, J_{7.8} 8.9 \mathrm{~Hz}, \mathrm{H}-8$), and $9.69\left(1 \mathrm{H}, \mathrm{d}, J_{58} 6.9 \mathrm{~Hz}, \mathrm{H}-5\right.$), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1775 \mathrm{~s}$ and $1640 \mathrm{~s} \mathrm{~cm}^{-1}$, m/e $259\left(11 \%, M^{+}\right.$, $\left.\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}\right), 217\left(26, \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}\right), 200\left(100, \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}\right.$,

Table 1
Experiments to determine the effect on the cobaloxime degradation of (a) the presence or absence of oxygen; (b) the nature of the cobaloxime component
(i) 2-Hydroxypropyl(pyridine) cobaloxime
$\begin{array}{lllll}\mathrm{O}_{2} \text { bubbled through, in } & 60 & 48 & 70 & 29\end{array}$ daylight

| $\begin{array}{c}\text { degassed in a sealed vial, } \\ \text { in daylight }\end{array}$ | 60 | 48 | 108 | 27 |
| :---: | :---: | :---: | :---: | :---: | sealed in air, irradiated by a flood lamp

(ii) 2-Hydroxyethyl(pyridine) cobaloxime $\begin{array}{llllll}\text { sealed in air, in daylight } & 60 & 114 & 74 & 16\end{array}$
$\begin{array}{llllll}\text { (iii) Methyl(pyridine) cobaloxime } \\ \text { sealed in air, in daylight } & 60 & 144 & 16 & 14\end{array}$

(iv) Bromo(pyridine)-	60	144	60	0
cobaloxime	60	48	77	$16 \dagger$
(v)2-Hydroxypropyl(4- methylpyridine)-	60	48	111	3
cobaloxime				
(vi) (Pyridine)cobaloxime (iI)	60	48	115	4

* DMG di-OAc $=$ dimethylglyoxime di- O-acetate. \dagger Product (8).
$217-\mathrm{OH}^{*}$), 186 ($19, \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}$), 185 ($17, \mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$), $170\left(32, \mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}\right), 105\left(47, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}\right), 78\left(62,105-27^{*}\right)$, and 51 (15, 78-27*) (Found: C, 60.05; H, 4.85; N, 16.55. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 60 \cdot 2$; $\mathrm{H}, 5.05$; $\mathrm{N}, 16.2 \%$).

The above procedure was used to determine the effects on
the reaction of: (a) the presence or absence of oxygen; (b) the nature of the cobaloxime; (c) the effect of light. Representative results are summarised in Table 1.

In a further experiment to assess the effect of light on the degradation, 2-hydroxypropyl(pyridine) cobaloxime ($0 \cdot 427 \mathrm{~g}$, 1 mmol) was dissolved with warming in pyridine (4 ml) in a stoppered test tube, and acetic anhydride (1 ml) was added. The mixture was kept at room temperature in daylight or wrapped in foil, and at intervals samples (0.5 ml) were withdrawn and evaporated under high vacuum at room temperature. The residue was dissolved in dichloromethane and filtered through Celite. The filtrate was evaporated and the residue dissolved in $\mathrm{CDCl}_{3}(0.4 \mathrm{ml})$, and the n.m.r. spectrum was taken. Ratios of starting material, product (5), and dimethylglyoxime di- O-acetate were estimated by integration. There were no significant differences in yields for these products under the two sets of conditions.

Large-scale Preparation of 3-Acetyl-2-[(E)-1-Hydroxy-iminoethyl]imidazo[1,2-a]pyridine (6).-2-Hydroxypropyl(pyridine)cobaloxime ($3.63 \mathrm{~g}, 8.5 \mathrm{mmol}$) was dissolved with warming in dry pyridine (30 ml) and redistilled acetic anhydride ($9 \mathrm{ml}, 90 \mathrm{mmol}$) was added. The mixture was stirred at room temperature with exclusion of moisture, and the reaction monitored by withdrawing samples $(0.5 \mathrm{ml})$ at intervals, evaporating, and examining their n.m.r. spectra $\left(\mathrm{CDCl}_{3}\right)$. Formation of 2-acetoxypropyl(pyridine)cobaloxime (2) was 90% complete after 13 h . After 9 days, the mixture [less six samples (10%)] was evaporated (0.05 mmHg), and the residue dissolved in ethyl acetate, and the evaporation repeated. The final residue was dissolved in dichloromethane and filtered through silica gel, and the total dichloromethane washings were evaporated to give a mixture (1.28 g) of (5) and dimethylglyoxime di- O-acetate. Washing the residue with ethyl acetate gave a dark oil $(0.080 \mathrm{~g})$ containing a little (5), which could not be purified further. No alkylcobaloxime was present. The oily dichloromethane eluate was sublimed (100° and 0.001 mmHg) to give white crystals $(0.825 \mathrm{~g})$. This material was added to a solution of sodium ($0.23 \mathrm{~g}, 10 \mathrm{mmol}$) in methanol (20 ml). T.l.c. ($5 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$) showed immediate conversion of (5) ($R_{\mathrm{F}} 0.4$) into (6) ($R_{\mathrm{F}} 0 \cdot 2$). Next day the solution was evaporated, and water and $\mathrm{M}-\mathrm{HCl}$ were added until the mixture was neutral. Compound (6) was extracted into dichloromethane ($3 \times 30 \mathrm{ml}$); dimethylglyoxime was insoluble in water and in dichloromethane. The extracts, dried and evaporated, gave white crystals ($0.50 \mathrm{~g}, 2.3 \mathrm{mmol}$). Recrystallisation from ethyl acetate gave (6) as colourless plates (0.30 g), m.p. 190°, n.m.r. data similar to those of (5) except for absence of a signal at $\delta \mathbf{2 . 2 7}$ and the gain of a signal at $\delta 9 \cdot 30 \mathrm{br}(1 \mathrm{H}, \mathrm{OH})$; ${ }^{{ }^{\text {max }}} 3585 \mathrm{~m}, 3320 \mathrm{~m}, \mathrm{br}$, and 1640 s $\mathrm{cm}^{-1}, \lambda_{\text {max }} 227(\varepsilon 17,350), 252(25,000), 31 \mathrm{lbr}(7510)$, $219 \mathrm{sh}(16,800)$, and $299 \mathrm{sh} \mathrm{nm} \mathrm{(7230)}, \mathrm{m/e} 217\left(100 \%, M^{+}\right.$, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$) and $200\left(90,217-17^{*}\right.$), M (osmometric; CHCl_{3}) 221. A second crop ($0 \cdot 10 \mathrm{~g}$) from the recrystallisation had m.p. 189°.

3-([$\left[{ }^{2} \mathrm{H}_{3}\right]$ Acetyl $)-2-\left\{(\mathrm{E})-1-\left[{ }^{2} \mathrm{H}_{1}\right]\right.$ hydroxyiminoethyl $\}$ imidazo-[1,2-a]pyridine.-Compound (6) ($40 \mathrm{mg}, 0.18 \mathrm{mmol}$) was dissolved in $1.94 \mathrm{~m}-\mathrm{NaOD}(1 \mathrm{ml})(10 \mathrm{~min})$, neutralised with DCl in $\mathrm{D}_{2} \mathrm{O}$, and extracted into dichloromethane. The extracts, dried and evaporated, gave crystalline material (40 mg), m.p. 190°, n.m.r. data identical with those of (6) except for absence of signals at $\delta 2.55$ and $9.30 ; m / e 221$ (M^{+}).
${ }^{13}$ G. N. Schrauzer and R. J. Windgassen, J. Amer. Chem. Soc., 1967, 89, 143.

2-(1-Acetamidovinyl)-3-acetylimidazo[1,2-a]pyridine (16). ---After reactions of 2-hydroxyethyl(pyridine)cobaloxime (3) and of methyl(pyridine)cobaloxime (15) with acetic anhydride in pyridine, for 7 days at 60°, and isolation of dimethylglyoxime di- O-acetate and (5) as described above, further elution of the column with chloroform gave ca. 5% of (16). On t.l.c. (EtOAc-PhH, 1:1) (16) had the same R_{F} value as (6) ($0 \cdot 2$), but in $5 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}$ had a slightly lower R_{F} value. The sample of (16) for mass spectral analysis was purified by p.l.c. (developed 4 times in 5% $\left.\mathrm{MeOH}-\mathrm{CHCl}_{3}\right)$; m.p. $184^{\circ}, \delta \mathbf{2} \cdot 14(3 \mathrm{H}, \mathrm{s}, \mathrm{NHAc}), 2 \cdot 65(3 \mathrm{H}$, s, CAc), $5.02\left(1 \mathrm{H}, \mathrm{d}, J 1.0 \mathrm{~Hz},=\mathrm{CH}_{\mathrm{A}}\right)$ (collapses to singlet on irradiation at $\delta 7.95$ or shaking with $\mathrm{D}_{2} \mathrm{O}$) $6.39(1 \mathrm{H}, \mathrm{s}$, $\left.=\mathrm{CH}_{\mathrm{B}}\right), 7.00\left(1 \mathrm{H}, \mathrm{t}, J_{5,6}+J_{6,7} 14.0 \mathrm{~Hz}, \mathrm{H}-6\right), 7.55(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-7$ and 8), $7.95 \mathrm{br}(1 \mathrm{H}, \mathrm{NH})$ (disappears on addition of $\mathrm{D}_{2} \mathrm{O}$ and shaking for 10 min), and $9.53\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 6.7 \mathrm{~Hz}\right.$, $\mathrm{H}-5), v_{\max }\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3420 \mathrm{~m}, 1690 \mathrm{~s}, 1638 \mathrm{~s}$, and $1485 \mathrm{~s} \mathrm{~cm}{ }^{-1}$, $m / e 243\left(69 \%, M^{+}, \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}\right.$), 228 (20), 200 (100, 243 43^{*}), and $186\left(20,228-42^{*}\right)$.

3-Acetyl-2-(1,1-dinitroethyl)imidazo[1,2-a]pyridine (11).Compound (6) ($43 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to concentrated nitric acid (2 ml) and dissolved with evolution of brown fumes. After 10 min at room temperature, water (5 ml) was added, and the pale yellow solid (31 mg) filtered off. This was homogenous on t.l.c. $\left(R_{\mathrm{F}} 0.6\right.$ in $\left.5 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}\right)$; a further 10 mg of slightly less pure material was extracted from the acidic solution into dichloromethane. Recrystallisation from ether, then water, gave (11) as needles, m.p. 177°, $\delta 2.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.70(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.31\left(1 \mathrm{H}, \mathrm{dd}, J_{7.8} 11 \cdot 3\right.$, $J_{6,7} 7.0 \mathrm{~Hz}, \mathrm{H}-7$), $7.71\left(1 \mathrm{H}, \mathrm{d}, J_{7.8} 11.3 \mathrm{~Hz}, \mathrm{H}-8\right), 7.83$ (1 H , $\left.\mathrm{t}, J_{5.6}+J_{6.7} 14.0 \mathrm{~Hz}, \mathrm{H}-6\right)$, and $8.91\left(1 \mathrm{H}, \mathrm{d}, J_{5,6} 6.7 \mathrm{~Hz}\right.$, $\mathrm{H}-5), v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1656 \mathrm{~s}$ and $1580 \mathrm{vs} \mathrm{cm}^{-1}, \lambda_{\text {max. }} 218.5$ (ε $21,600), 248$ (12,030), 318 (5710), 254sh (10,190), 302sh (5560), and 330sh nm (5090), m/e $278\left(5 \%, M^{+}, \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{5}\right)$, 232 (7), 186 ($100, \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$) (Found: C, 47.55 ; $\mathrm{H}, 3.85$; $\mathrm{N}, 19 \cdot 8 . \quad \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $\mathrm{C}, 47.5 ; \mathrm{H}, 3 \cdot 6 ; \mathrm{N}, 20 \cdot 15 \%$).

Synthesis of Possible Intermediates (19) and (20).-2-(1-Hydroxyiminoethyl)imidazo[1,2-a]pyridine (19). 1-Bromo3 -hydroxyiminobutan-2-one ${ }^{12}(0.90 \mathrm{~g}, 5 \mathrm{mmol})$ in dry dioxan (5 ml) was mixed with a solution of 2 -aminopyridine $(0.47 \mathrm{~g}$, 5 mmol) in dioxan (5 ml), and sodium hydrogen carbonate ($0.42 \mathrm{~g}, 5 \mathrm{mmol}$) in dioxan (2 ml) was added. The mixture was heated at 100° until evolution of carbon dioxide ceased (ca. 1.5 h). Black insoluble matter was filtered off, and the filtrate evaporated. The residue was dissolved in chloroform (250 ml) and washed with several small portions of water. The aqueous washings were extracted once with chloroform, and the combined chloroform extracts were dried and evaporated to give an off-white solid (0.50 g), m.p. 213°. Two recrystallisations from ethyl acetate gave colourless crystals of (19) ($0.30 \mathrm{~g}, 35 \%$), m.p. $215^{\circ}, \delta(\mathrm{NaOD})$ $2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.70\left(1 \mathrm{H}, \mathrm{t}, J_{5.6}+J_{6.7} 13.0 \mathrm{~Hz}, \mathrm{H}-6\right)$, $7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$ and 8$), 7.64(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 8.02$ ($1 \mathrm{H}, \mathrm{d}$, $J_{5.6} 6 \cdot 0 \mathrm{~Hz}, \mathrm{H}-5$), $v_{\max }$ (Nujol) $3400-2300 \mathrm{~m}$ and 1630 w $\mathrm{cm}^{-1}, \lambda_{\max } 234(\varepsilon 30,850)$, 315 (5580), 278sh (4000), 288sh (4270), 306 sh (5240), and 328sh nm (4090), m/e 175 (100%, M^{+}) (Found: C, $61 \cdot 0 ; \mathrm{H}, 5 \cdot 15 ; \mathrm{N}, 24 \cdot 0 . \quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$ requires C, $61.7 ; H, 5 \cdot 2 ; \mathrm{N}, 24.0 \%$).

2-(1-Acetoxyiminoethyl)imidazo[1,2-a]pyridine (20). To (19) $(70 \mathrm{mg}, 0.4 \mathrm{mmol})$ in dry pyridine $(1.6 \mathrm{ml})$ was added redistilled acetic anhydride ($0.4 \mathrm{ml}, 4 \mathrm{mmol}$). After 3 h at room temperature the mixture was evaporated under high vacuum to give crystalline (20) (83 mg). Three recrystallisations from benzene-petroleum gave a sample of m.p. 131°, $\delta 2.25,(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.53(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 6.80\left(\mathrm{lH}, \mathrm{t}, J_{5.6}+J_{6.7}\right.$
$12.9 \mathrm{~Hz}, \mathrm{H}-6$), 7.18 (1 H , dd, $J_{6.7} 6 \cdot 3, J_{7.8} 9.0 \mathrm{~Hz}, \mathrm{H}-7$), 7.60 ($1 \mathrm{H}, \mathrm{d}, J_{7.8} 9.0 \mathrm{~Hz}, \mathrm{H}-8$), $8.09\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 6.6 \mathrm{~Hz}, \mathrm{H}-5\right)$, and $8.09(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3),{ }_{\text {max. }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1763 \mathrm{~s}, 1635 \mathrm{w}$, and 1611 w $\mathrm{cm}^{-1}, m / e 217\left(33 \%, M^{+}\right)$(Found: C, 60.9; H, $5 \cdot 1 ; \mathrm{N}$, 19.35. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 60 \cdot 8 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 19 \cdot 35 \%$).

Preparation of Model Compounds.-1-Benzyl-2-acetyl-imidazo[1,2-a]pyridinium-3-olate (10). This compound, prepared as described, ${ }^{5}$ gave yellow needles from benzene, m.p. $176-178^{\circ}$ (lit., ${ }^{5} 170-171^{\circ}$), $\delta 2.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.90(2 \mathrm{H}, \mathrm{s}$, CH_{2}), $6.91\left(1 \mathrm{H}, \mathrm{t}, J_{5.6}+J_{6,7} 13.2 \mathrm{~Hz}\right), 7 \cdot 1-7 \cdot 4(6 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-8+\mathrm{Ph}), 7.53\left(1 \mathrm{H}, \mathrm{dd}, J_{6,7} 6.5, J_{7.8} 9.2 \mathrm{~Hz}, \mathrm{H}-7\right.$), and 8.40 ($1 \mathrm{H}, \mathrm{d}, J_{5,6} 6.7 \mathrm{~Hz}, \mathrm{H}-5$), $\mathrm{v}_{\text {max. }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1675 \mathrm{~s}, 1635 \mathrm{w}, 1605 \mathrm{~s}$, and $1535 \mathrm{~m} \mathrm{~cm}^{-1}, \lambda_{\max } 262(\varepsilon 14,100), 271(11,810)$, and 394 $\mathrm{nm}(10,820), m / e 266\left(32 \%, M^{+}\right)$(Found: C, $72 \cdot 45$; H, $5 \cdot 4$; $\mathrm{N}, 10 \cdot 4$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $72 \cdot 15 ; \mathrm{H}, 5 \cdot 3$; N , 10.5%).

1-Benzyl-3-chloroacetylimidazo[1,2-a]pyridinium-2-olate (12). A mixture of 2-(benzylamino)pyridine ($1.84 \mathrm{~g}, 10$ mmol) in dry, peroxide-free dioxan (25 ml) with chloroacetic anhydride ($5.13 \mathrm{~g}, 30 \mathrm{mmol}$) and chloroacetic acid (1.89 g , 20 mmol) was refluxed for 2.5 h , then evaporated. 10% Sodium hydroxide was added until the mixture was basic. Extraction with dichloromethane ($3 \times 40 \mathrm{ml}$) and evaporation of the dried extracts gave a brown oil $(3 \cdot 4 \mathrm{~g})$. This was purified on a short silica gel column (40 g) under suction, with chloroform as eluant, to give material ($2 \cdot 6 \mathrm{~g}, 87 \%$) which was recrystallised from benzene. The pink crystals of (12) obtained turned brown on exposure to light; m.p. 157° (lit., ${ }^{7} 154-155^{\circ}$) (Found: C, 64.05; H, 4.55; N, 9. 25. Calc. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C, $63.9 ; \mathrm{H}, 4.35 ; \mathrm{N}, 9.3 \%$).

3-Chloroacetyl-1-methylimidazo[1,2-a]pyridinium-2-olate (13). 2-(Methylamino) pyridine was refluxed with chloroacetic anhydride (3 mol . equiv.) and chloroacetic acid (2 mol. equiv.) for 2 h [$c f$. procedure for (12)]. The crude product was recrystallised from acetone twice giving green crystals of (l3), m.p. 245° (decomp.) (lit. ${ }^{7} 234^{\circ}$), $\delta 3.48(3 \mathrm{H}$, s, Me), $4 \cdot 77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7 \cdot 11\left(1 \mathrm{H}, \mathrm{d}, J_{7.8} 8.0 \mathrm{~Hz}, \mathrm{H}-8\right), 7 \cdot 15$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), $7.62\left(\mathrm{H}, \mathrm{t}, J_{6} 7+J_{7.8} 15.7 \mathrm{~Hz}, \mathrm{H}-7\right.$), and $9.98\left(1 \mathrm{H}, \mathrm{d}, J_{5.6} 6.5 \mathrm{~Hz}, \mathrm{H}-5\right)$, $\nu_{\text {max. }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1665 \mathrm{~s}, 1635 \mathrm{w}$, 1593 s , and $1520 \mathrm{~m} \mathrm{~cm}^{-1}$.
Crystal Structure Determination.-Crystals were chosen from the first crop from ethyl acetate obtained as described in the preparation of (6). The crystals were laths with c along their length and b across them.
Crystal data. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}, M=217 \cdot 1$. Orthorhombic, $a=16 \cdot 402(10), \quad b=13.463(10), \quad c=9.735(10) \quad \AA, \quad U=$ $2149.7 \AA^{3}, D_{\mathrm{m}}=1.332 \mathrm{~g} \mathrm{~cm}^{-3}, Z=8, D_{\mathrm{c}}=1.346 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=912$, Space group $P b c a$ from systematic absences: $0 k l$ for $k \neq 2 n, h 0 l$ for $l \neq 2 n$, and $h k 0$ for $h \neq 2 n$. Mo- K_{α} radiation for intensity measurement and unit-cell parameters, $\lambda=0.7107 \AA$, with graphite monochromator.

Data were collected on a Stoe-Weissenberg two-circle diffractometer, by ω-scan technique. Unit-cell parameters were obtained from the reflecting positions of high-angle reflections, with standard deviations estimated from the agreement of observed and calculated values. 1865 Reflections were measured in 11 layers of the primary axis (c), and 439 reflections in 3 layers of the crossing axis (b), with check reflections measured every 30 reflections. Lorentz and polarisation corrections were applied, and the intensities merged to give 1903 independent reflections of which 546 having $I<0 \cdot 1 \sigma(I)$, were taken to have the limiting values of $0 \cdot 1 \sigma(I)$. The intensities were converted to normalised structure factors and placed on an absolute scale. The program PHASER was used for the solution of the structure
by direct methods. ${ }^{14}$ In this procedure, as applied here, all the Σ_{2} relationships were generated between the $\mathbf{3 6 6}$ reflections with $E>1 \cdot 3$, and sorted in order of descending probability. The 60 strongest reflections ($E>2.045$) were used as generators, with three origin-specifying reflections: $8,5,0$ E $3 \cdot 471$; $3,11,5 E 3 \cdot 264$; and $1,9,6 E 2 \cdot 761$. The remaining 57 phases were determined from the firstencountered relationships. Five cycles to remove discrepant relationships resulted in 23 phases being changed from the values initially assigned. Further application of the Σ_{2} relationships starting from these 60 generator phases allowed 247 new phases to be determined. An E map based on these phases showed 16 peaks corresponding to the 16 non-hydrogen atoms. This molecular framework does not distinguish between the two alternative interpretations (6) and (21). Further considerations show (6) to be the correct

(21)
structure: (i) the peak on the E-map due to the atom N-4 is the most intense on the entire map; and (ii) structure (21)

Table 2

Atomic co-ordinates, with standard deviations in parentheses. Here, and in subsequent Tables, the atom numbering system is that used in the crystallographic analysis and shown in Figure 2

	x / a	y / b	z / c
C (2)	$0 \cdot 1511(10)$	-0.0968(12)	$0 \cdot 1238(17)$
C(3)	$0 \cdot 1205(10)$	-0.0174(12)	$0.0475(13)$
C(5)	$0.0431(10)$	$0 \cdot 1385(12)$	$0 \cdot 1124(20)$
C(6)	$0.0134(11)$	$0 \cdot 1857(12)$	0.2193(25)
$\mathrm{C}(7)$	$0.0247(12)$	$0 \cdot 1473(15)$	$0 \cdot 3485(21)$
C(8)	$0.0633(11)$	$0.0607(13)$	$0 \cdot 3802(17)$
C(9)	$0 \cdot 0934$ (8)	$0.0089(11)$	$0 \cdot 2630$ (20)
$\mathrm{C}(10)$	$0 \cdot 1951(10)$	-0.1878(12)	$0 \cdot 0880(15)$
C(11)	$0 \cdot 2811$ (9)	$-0.2053(12)$	$0 \cdot 1470$ (16)
C(14)	$0 \cdot 1266(10)$	$-0.0017(14)$	$-0 \cdot 1035(19)$
$\mathrm{C}(15)$	$0 \cdot 1839(12)$	$-0.0643(15)$	$-0 \cdot 1863(20)$
$\mathrm{N}(1)$	$0 \cdot 1353$ (7)	-0.0762(9)	$0 \cdot 2592(16)$
$\mathrm{N}(4)$	$0 \cdot 0833(8)$	$0.0489(10)$	$0 \cdot 1370$ (15)
$\mathrm{N}(12)$	$0 \cdot 1564(7)$	-0.2477(12)	$0.0084(17)$
$\mathrm{O}(13)$	0.2039(7)	$-0.3313(7)$	$-0.0186(12)$
$\mathrm{O}(16)$	0.0848(8)	$0.0663(11)$	$0 \cdot 1522(14)$
$\mathrm{H}(5)$	0.0221	$0 \cdot 1401$	-0.0016
H(6)	-0.0229	$0 \cdot 2413$	$0 \cdot 2403$
H(7)	0.0143	$0 \cdot 1830$	$0 \cdot 4380$
H(8)	0.0679	$0 \cdot 0184$	0.4821
H(111)	0.3167	-0.2000	-0.0500
H(112)	$0 \cdot 2500$	-0.1800	0.2250
$\mathrm{H}(113)$	$0 \cdot 3000$	-0.2800	0.2250
$\mathrm{H}(13)$	$0 \cdot 1706$	-0.3634	-0.1097
H(151)	$0 \cdot 1667$	-0.1200	-0.2000
H(152)	0.2333	-0.0600	-0.2000
H(153)	$0 \cdot 1750$	-0.0200	-0.2500

would provide no explanation for the deshielding of the α pyridine proton observed in the n.m.r. spectrum; in structure (6), H-5 would be deshielded by the peri-carbonyl group of the 3-acetyl substituent.
${ }^{14}$ J. M. Stewart, in • Crystallographic Computing,' ed. F. R. Ahmed, Munksgaard, Copenhagen, 1970, p. 71.

Refinement. Refinement used the 520 reflections with $I>2 \cdot 5 \sigma(I)$. Two cycles reduced R to $0 \cdot 130$, and a differ-ence-Fourier map at this stage enabled the positions of all the 11 hydrogen atoms to be determined. The final refinement with anisotropic temperature factors for non-hydrogen atoms brought R to 0.089 . Attempts to refine the positions of the hydrogen atoms gave unacceptable bond lengths and angles, and these atoms were therefore kept at the positions shown by the difference map. All computing was with the X-Ray system ${ }^{15}$ on the S.R.C. ATLAS computer.

Table 2 gives the co-ordinates of all the atoms, and Table 3
Table 3
Anisotropic temperature factors * ($\times 10^{3}$) for non-hydrogen atoms, with standard deviations in parentheses. All hydrogen atoms were given isotropic temperature factors, $U 2.5 \times 10^{-2} \AA^{2}$

	11	U_{22}	U_{33}	12	${ }^{13}$	U_{23}
$\mathrm{C}(2)$	45(11)	36(10)	38(11)	$-3(8)$	10)	9)
C(3)	31(9)	40(9)	13(8)	$-6(8)$	-1(7)	17(8)
C(5)	$31(10)$	20(10)	95(16)	-2(8)	-25(12)	22(10)
C(6)	55(14)	29(10)	115(19)	28(10)	24(14)	-9(13)
$\mathrm{C}(7)$	68(15)	57(14)	68(15)	-18(11)	-19(12)	24(13)
$\mathrm{C}(8)$	80(15)	32(10)	40(12)	-6(10)	$-37(11)$	16(10)
$\mathrm{C}(9)$	$-37(9)$	21 (8)	52(12)	$-13(8)$	11(10)	5(9)
$\mathrm{C}(10)$	3(11)	50(11)	19(9)	$-13(9)$	-7(9)	15(9)
C(11)	39(11)	80(14)	38(10)	21(9)	7 (9)	3(10)
$\mathrm{C}(14)$	31(11)	62(13)	68(13)	$-12(10)$	-1(11)	19(12)
$\mathrm{C}(15)$	72(14)	53(14)	88(15)	4(12)	31(13)	16(11)
$\mathrm{N}(1)$	$30(8)$	$32(8)$	80(12)	$15(7)$	23(9)	5(9)
$\mathrm{N}(4)$	$39(8)$	43(9)	40(9)	$-13(8)$	13(8)	$27(8)$
$\mathrm{N}(12)$	$55(9)$	$44(8)$	65(11)	6(8)	6 (10)	$11(8)$
O(13)	$74(9)$	37(7)	59(8)	6(6)	$-17(8)$	-5(7)
$\mathrm{O}(16)$	60(9)	75(11)	78(10)	-2(8)	-3(9)	26(9)
* In the form: $\exp -2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}\right.$ $\left.2 U_{12} h k a^{*} b^{*}+2 U_{13} h l a^{*} c^{*}+2 U_{23} k l b^{*} c^{*}\right)$.						

Table 4
Details of least-squares planes. Deviations (\AA) from the plane of the atoms defining the plane are given first, followed by those of other non-hydrogen atoms. σ Is the standard deviation of the defining atoms from the plane
(a) Deviations

Plane (1)		Plane (2)		Plane (3)	
$\mathrm{C}(2)$	-0.016	$\mathrm{C}(3)$	0.004	$\mathrm{C}(2)$	0.000
$\mathrm{C}(3)$	0.012	$\mathrm{C}(14)$	-0.013	$\mathrm{C}(10)$	-0.003
$\mathrm{C}(5)$	0.005	$\mathrm{C}(15)$	0.004	$\mathrm{C}(11)$	-0.001
$\mathrm{C}(6)$	-0.010	$\mathrm{O}(16)$	0.005	$\mathrm{~N}(12)$	0.002
$\mathrm{C}(7)$	0.004			$\mathrm{O}(13)$	-0.001
$\mathrm{C}(8)$	0.004	$\mathrm{C}(2)$	-0.207		
$\mathrm{C}(9)$	-0.014	$\mathrm{C}(5)$	0.538	$\mathrm{C}(3)$	-0.880
$\mathrm{~N}(1)$	0.013	$\mathrm{C}(6)$	0.757	$\mathrm{C}(5)$	-0.834
$\mathrm{~N}(4)$	0.002	$\mathrm{C}(7)$	0.752	$\mathrm{C}(6)$	-0.104
		$\mathrm{C}(8)$	0.506	$\mathrm{C}(7)$	1.060
$\mathrm{C}(10)$	-0.026	$\mathrm{C}(9)$	0.236	$\mathrm{C}(8)$	1.586
$\mathrm{C}(11)$	1.129	$\mathrm{C}(10)$	-0.530	$\mathrm{C}(9)$	0.802
$\mathrm{C}(14)$	0.074	$\mathrm{C}(11)$	0.450	$\mathrm{C}(14)$	-2.186
$\mathrm{C}(15)$	0.400	$\mathrm{~N}(1)$	-0.011	$\mathrm{C}(15)$	$-\mathbf{2} .815$
$\mathrm{~N}(12)$	-1.041	$\mathrm{~N}(4)$	0.274	$\mathrm{~N}(1)$	1.024
$\mathrm{O}(13)$	-0.946	$\mathrm{~N}(12)$	-1.648	$\mathrm{~N}(4)$	-0.354
$\mathrm{O}(16)$	-0.109	$\mathrm{O}(13)$	0.124	$\mathrm{O}(16)$	-2.710
σ	0.0106	σ	0.0087	σ	0.0020

(b) Equations of planes in orthogonal (\AA) co-ordinates

Plane (1): $\quad 0.0865 X+0.4935 Y+0.0879 Z=1.6227$
Plane (2): $\quad 0.7397 X+0.6544 Y+0.1567 Z=1.3763$
Plane (3): $-0.3975 X-0.4579 Y+0.7952 Z=0.5698$
(c) Angles (deg.) between planes
(1)-(2) 60.0, (1)-(3) 12.4, (2)-(3) $62 \cdot 0$

[^2]Table 5
Intermolecular distances $(\AA)<2.5 \AA$

$\mathrm{H}(8) \cdots \mathrm{H}\left(8^{\text {r }}\right.$)	$2 \cdot 31$	$\mathrm{N}(1) \cdots \mathrm{H}\left(13^{1 \mathbf{V}}\right)$	1.62
$\mathrm{H}(7) \cdots \mathrm{H}\left(5^{\text {II }}\right)$	$2 \cdot 46$	$\mathrm{H}(13) \cdots \mathrm{H}\left(112^{\text {V }}\right.$)	$2 \cdot 15$
$\mathrm{H}(5) \cdots \mathrm{H}\left(7^{\text {III }}\right.$)	$2 \cdot 46$	$\mathrm{H}(13) \cdots \mathrm{N}) \mathbf{l}^{\mathbf{v}}$)	1.62
$\mathrm{H}(112) \cdots \mathrm{H}\left(13^{\text {rv }}\right.$)	$2 \cdot 15$		

Roman numeral superscripts refer to the following equivalent positions relative to the reference molecule at x, y, z :
I $-x,-y_{1} 1-z$
IV $x,-\frac{1}{2}-y, \frac{1}{2}+z$
II $x, \frac{1}{2}-y, \frac{1}{2}+z$
$\mathrm{V} x,-\frac{1}{2}-y, z-\frac{1}{2}$
III $x, \frac{1}{2}-y, z-\frac{1}{2}$
their temperature factors. Observed and calculated structure factors are available in Supplementary Publication No. SUP 21190 (4 pp .).* Table 4 gives details of three least-squares planes defined by (l) the 9 atoms of the
heteroaromatic ring system, (2) the 4 atoms of the 3 -acetyl substituent, and (3) the 5 atoms of the $2-[(E) 1$-hydroxyiminoethyl] group. Table 5 lists intermolecular distances $<2.5 \AA$.

We thank the Royal Society for a European Exchange Scholarship (U. H.), the S.R.C. for studentships (D. R. H. and W. P. W.) and for a grant (N. W. A. with Dr. D. Russell) for the purchase of a Stoe diffractometer, P.C.M.U. Harwell for mass and 100 MHz n.m.r. spectral data, and the University of Hull service for other mass spectral spectra.

[4/1076 Received 3rd June, 1974]

* For details of Supplementary Publications see Notice to Authors, No. 7 in J.C.S. Perkin I, 1974, Index issue.

[^0]: 4 W. W. Paudler and H. L. Blewitt, Tetrahedron, 1965. 21, 353.
 5 A. Lawson and D. H. Miles, J. Chem. Soc., 1959, 2865.
 ${ }^{6}$ R. M. Acheson and D. A. Robinson, J. Chem. Soc. (C), 1968, 1633.

[^1]: * Compound (16) (probable structure) was isolated as a byproduct in the degradations starting from (3) and (15).

[^2]: ${ }^{25} X$-Ray System of Crystal Structure Programs, University of Maryland Technical Report TR 67 58, revised 1970.

